DAT. IBrASIES
DEVELOPERS

how to scale your services,

save youwr data,

and tame elephants

IF YOU'RE A DEVELOPER,
YOU USE A DATABASE.

YOU MAY LOVE OR RATE [T.

all your

garizung

code around your

database performance

now ¢

48.19%

MySQL

PostgreSQL 44.08%

SQLite 30.86%

Microsoft SQL Server 29.43%

MongoDB 28.03%

t's probably Postgres. s

24.51%
MariaDB 17.14%

Firebase 15.89%

Elasticsearch 15.72%

Oracle 12.89%

(source: StackOvertlow Developer Survey 2021)

This book will teach you how to:

/

/

and
your application's relational database.

Some examples are Postgres-specitic.
Most will work broadly.

FIRST: WHY DATABASES WORK [N CLUSTERS-

L
't's not because they're lonely. ~

In larger or cloud-based database
deployments, you will want a cluster (=
several server instances using the same

data) to ensure availability, scalability,

and in some cases cache optimization.

Each instance will have ditferent
access patterns, and may have

different resource allocations.

In your application, you may use or see
others using ditferent connection pools
tor read and read /write workloads.

Read-only Read-write

Connection Connection In most applications, the APIs used for

pool pool

writing have significantly ditterent uses
than the ones tor reading. They may be:
less latency-sensitive;
used by services instead of humans;
imited to specitic data;
primarily used at some times ot day

When the work is very ditferent, it makes
Read instance Read/Write instance sense to target it for different instances.

Here are some code examples.

Use targetServerType in the connection string:

String url = "jdbc:postgresql://host /test?user=user&password=secret&ssl=true&targetServerType=primary";
Connection conn = DriverManager.getConnection(url);

Set up two databases in database.yml and use them like this: Ruby/Rails

class ApplicationRecord < ActiveRecord::Base

self.abstract class = true
connects_to database: { writing: :primary, reading: :primary_replica }
end

The pg module uses a connection string. Use a different hostname for the write instance:

var pg = require('pg’);
var cs = postgres://user:passwordehost:5432 /db";

var csReader = postgres://user:passwordehost-ro:5432 /db";

Unlike the JDBC or Rails example, this won't ensure that the “read-write” connection is to
the primary server endpoint. Use a library if you want that behavior.

SECOND: WHY DATABASE CALLS "GET STUCK".

When your database connection "gets
stuck”, what it really means is your
application is waiting on it.

No?

Here's what could be happening:

e you have run out of connections

e you are waiting on a transaction that
takes too long to execute

® you dre waiting on a

e the result set you are requesting

takes too much memory

e your database query has already
returned, but your own server code is
taking a really long time to process it

Monitoring will tell you which. At any
rate, your application should always
long database queries.

App

instance

Each of your active database :

. /
connections has a cost. =

App App
instance instance
| 2

As a result, most database systems will 10+10+ ... + 10 connections
=K+K+..+K MB

default to a maximum number of
concurrent connections. If your queries
take too long, they can pile up until that

number is hit.

Two options:

improve your query performance,
or use a connection pooler.

Relevant link: https://www.enterprisedb.com/postgres-tutorials /why-you-should-use-connection-pooling-when-setting-maxconnections-postgres

https://www.enterprisedb.com/postgres-tutorials/why-you-should-use-connection-pooling-when-setting-maxconnections-postgres

App App App
instance instance instance
] 2 N

10+10+ ... + 10 connections
=x+X+...+x MB

A A

pgbouncer is an example of a
connection pooler.

It does so by acting as a proxy server
and reusing one of the connections in its
pool to execute any new queries your
services send it.

That way, as you add service instances,
you do not need each new instance to
use up more database connections.

Relevant link: http://www.pgbouncer.org/usage.html

http://www.pgbouncer.org/usage.html

is something that can happen
when several processes attempt to
update the same table or tield.

Database systems will acquire locks

during certain operations. Most edit
operations only lock the target row(s)
(keep in mind

In rare cases, such as when running some
forms of REINDEX or VACUUM, the
transaction will lock the whole table.
As a result, all other queries may be on

hold a long time.

You can monitor which locks are
currently active in your database.

In Postgres, this information is stored in a
special view called pg_locks which
stores information about lock objects
and which processes hold them.

THIRD:
WIHY SOME USERS ARE SUPER; AND SOME ARE
NOBODY:.

There are several tiers ot users in
Postgres (and all other databases).
When you create your database server,
you will have a detfault, admin user.

Your application should use a ditterent
user account, with permissions set up so
that it can only see the appropriate
tables.

As we've seen with pg_locks, databases
often have "system" tables that contain

. Unprivileged
Admin User User App User

super valuable information about the
database itselt.

1

il =

The problem is it's also super valuable to
attackers. For instance, it can contain

—
~——
App table query text for everything that executes

on the same database!

As a result, app credentials (which are
part of a "more fragile” threat surtace)

should not see them.

In SQ

_, GRAN

SQL s

's can apply to specitic

‘atemen

's. For instance, a given

user may only do SELECTs, or some users
can INSERT new data but not modity

eX

iIsting rows.

There are also detault privileges, where a

new user could be able to read all

tables, including those that will be

created in the future.

These should be used wisely and

audited.

FOURTIAI:
WY YOUR DATABASE PASSWORD DOESN'T BELONG
IN YOUR CODE.

We now know your application should
have its own credentials.

But even it they are unique to this service
and well-restricted, they are secrefs,

Humans should not use service
credentials to access the database, and
service credentials need to be managed

and rotated by policies implemented in

automated systems.

Example: how to automatically rotate secrets in your database and service

Create a new Start service with new Test new

user/password combo secret service

All green

Stop older version using old

Delete older role

credentials

True 5/9@@%@ lmpéemmtatwm
exist using tools like Vault

or SecretsManager
(see link)

Add role again and pause

to find who is using it

you can also set up temporary dotabase secrets!

Relevant link: https://docs.aws.amazon.com/secretsmanager/latest /userguide /rotating-secrets.html

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html

FIFTIH:
WIHY SOME QUERIES ARE HARDER THAN QTHERS.

We have talked about

Some queries will execute a

vefore.

lot slower

than others. Here are factors that can

contribute:

e complex JOINs (costs CPU;

arge intermediate sets)

e large result sets

generates

e sort operations over large sets;

especially, sorting before filtering

e table scans over large tab

e using indexes with out of ¢
statistics

* sftring operations

€S

ate

You can run the
command to obtain detailed

information on query costs.
Let's look at some examples.

Note that the size of the set (number
of rows) has a great etfect on the

cost.
Seeing the output of ANALYZE can

take longer than the “real” query. Try
to use it on small reproductions.

ga e toat=3871.48..3871.49 rows=1 width=32) (actual time=2011.7@5..2011.70F rows=1 loops=1)
-> Nested Loo\ (cost=8.11..3871.47 rows=7 width=17) (actual time=8.142..20006.P87 rows=7834 loops=1)
Join Filtpr: (mc.movie_id = t.id)
Neste§l Loop (cost=7.68..3867.98 rows=7 width=8) (actual time=7.919..1{10.987 rows=7834 loops=1)
> WNested Loop (cost=7.26..3788.22 rows=179 width=12) (actual time= . RETEOR8A2Y rows=148552 pboops=1,
Nested Loop (cost=6.83..3768.21 rows=34 width=4) (actual time=4. 148400 268 rows=41340 loops=1)
Seq Scan on keyword k (cost=0.00..2626.12 rows=1 width=4) (actual time=0.258..7.280 rows=1 loo

Filter: ((keyword)::text = 'character-name-in-title'::text)
Rows Remoyeddby Filter: 134169
£ /BitniapgHeap Scan on movie_keyword mk (cost=6.83..1138.99 rows=3@9 width=8) (actual time=2.887..

Recheck Cond: Ckeyword_id = k.id)
Heap Blocks: exact=11541

Index Cond: (keyword_id = k.id)

Index Cond: (movie_id = mk.mowvie_id)

Aggregate (cost=4636.70..4636.71 rows=1 width=96) (actual time=654.409..655.159 rows=1 loops=1)
==anNested Loop (cost=1003.20..4636.69 rows=1 width=60) (actual time=169.218..649.097 rows=6946 loops=1)

-> Ggther fcost=1003.06. /4636.53 rows=1 width=64) (actual time=168.708..645.680 rows=6946 loops=1)

Workers Planned: 2
Werkers Launcheds 2

String operations (like using the LIKE

operator on a text field

't doing queries on tex

) are pretty slow.

- fields, consider

either pre-processing
you can use an exact
for text o

he data so that
match, or using

nd jsonb tfields.

Relevant link: https://pganalyze.com/blog/gin-index

https://pganalyze.com/blog/gin-index
https://pganalyze.com/blog/gin-index

SIXTIH: WHY IT'S ALWAYS DAY 2.
(EVEN ON AWS!)

"Day 2 operations’ reters to what you do

once your system is live in production.

Your database performance, however it
currently looks on your laptop, will
drastically change when real people use
your application.

You're beyond advice now.

To reproduce some types of issues that
only occur with production scale, you
can consider load testing your database.

This is relatively sate as you can run it on
a local copy. Make sure to use a set of
test queries that is representative of your

real-world use.

pgbench can be used for load testing.

Relevant link: https://www.postgresgl.org/docs/current/pgbench.html

https://www.postgresql.org/docs/current/pgbench.html

Relevant links:

https://grafana.com/grafana/dashboards/12273-postgresgl-

overview-postgres-exporter/

https://www.datadoghg.com/blog/collect-postgresql-data-with-

datadog/#tracing-postgresgl-queries-with-apm
https://youtu.be /4462hctkApM

Several types of database monitoring are
usetul.

You want to know which queries are
slower, and what pattern they occur in.

You want to know what is your average
CPU/memory usage, and when it changes.

And you want some tracing of long-held
locks, long transactions, and all errors.

https://grafana.com/grafana/dashboards/12273-postgresql-overview-postgres-exporter/
https://www.datadoghq.com/blog/collect-postgresql-data-with-datadog/#tracing-postgresql-queries-with-apm
https://youtu.be/4462hcfkApM

SELECT

(total time / 1000 / 60) as total,

(total time/calls) as avg,

For cloud databases, (and vy

query performance generally) can be FROM pg_stat_statements
ORDER BY 1 DESC

found in both RDS performance insights
and the Datadog APM view.

LIMIT 100;

SELECT

(total time / 1000 / 60) as total,

For Postgres in all deployments, (total_time/calls) as avg,
query
and the pg_activity, FROM pg_stat_statements

ORDER BY 1 DESC

tool also provide that information.

LIMIT 100;

Relevant link: https://www.citusdata.com/blog/2012/02 /08 /the-most-useful-postgres-extension-pg-stat-statements/

https://github.com/dalibo/pg_activity
https://www.citusdata.com/blog/2019/02/08/the-most-useful-postgres-extension-pg-stat-statements/

SEVENTIH: WHY YOUR DATABASE ISN'T "TOQ BIG".
UINTIL [T [S-

allows you to split a table
into physical partitions based on a given
column value.

This makes it easier to query and drop
individual partitions, as well as gives
smaller physical blocks to work with

when querying that field.

Partitions can be based on a range of
values or on specitic individual values.

They're a good match tor time values or

for partitioning out most active rows.

reters to splitting up the data in
your database into several instances
according to factors such as:

the geography it needs to live in,
the customers it is serving,

the trequency it is updated,

or its data retention policy.

It otten leads to smaller data (and

therefore lower cost, better
perfomance).
It is also easy.

EIGHTH: WHY YOU SHOULD USE THE INDEX, LUKE
UNLESS YOU DON'T ACTUALLY USE IT.

"Just add an index'' is common adyvice...

But it has a cat

First, indexes take up o

ch.

ot of space.

Each index grows the size of your table,

as well as the time it takes to insert fields

(and VACUUM them).

Second, not all query plans will use your

new index. As a result, monitoring is

important to

Postgres provides a view called

(it is part of the tamily of super-usetul
pg_stats views).

It contains statistics on
, and how many
rows are returned each time.

't can be combined with EXPLAIN output

to analyze how many ot your queries use

a given index, and what's their resulting
performance.

NEXT: ASK YOUR OWN QUESTIONS.

't you want to learn how databases work, a really good

start is asking deep questions about how your database

works. For instance:

What is the slowest page load in your application? Which

SQL queries does

it translate to? How long do they take?

What happens when your database server reboots it your

service had transactions pending?

You want to replace your existing table with a new one

with a differen:

- schema. What code do you need to

change? F

ow long will it take to execute?

The best way to prevent having oig, |5frbb|rhs in

eniyou'll

i b e - -
- o s
: o ? 7y W -t 7 5
P 3 " - -

."“

s kT -

d II =
O [BN BN J
" s

produch

o
o Lo - »

»

"
5

@ e

o g

-

— ST Reas ——— '

memory...

L

e P

d 3 ,

need an elephant's

<

USEF ILrILI]IJ\I]I](S
CURIOUS PEOPLE

https: //wiki.postgresgl.org/wiki/Main Page

https://sqgltordevs.com/

https://www.databass.dev/

https://microservices.io/patterns/data/database-per-service.html

https://wiki.postgresql.org/wiki/Main_Page
https://sqlfordevs.com/
https://www.databass.dev/
https://microservices.io/patterns/data/database-per-service.html

