
DATABASESDATABASES forfor
DEVELOPERSDEVELOPERS

how to scale your services,

save your data,

and tame elephants

IF YOU'RE A DEVELOPER,IF YOU'RE A DEVELOPER,
YOU USE A DATABASE.YOU USE A DATABASE.

YOU MAY LOVE OR HATE IT.YOU MAY LOVE OR HATE IT.

how organizing all your
code around your

database performance
can feel like

It's probably Postgres.

(source: StackOverflow Developer Survey 2021)

This book will teach you how to:
design,

optimize,
and monitor

your application's relational database.

Some examples are Postgres-specific.
Most will work broadly.

WITHWITH

PICTURES
PICTURES

FIRST: WHY DATABASES WORK IN CLUSTERS.FIRST: WHY DATABASES WORK IN CLUSTERS.

It's not because they're lonely.

In larger or cloud-based database
deployments, you will want a cluster (=
several server instances using the same
data) to ensure availability, scalability,
and in some cases cache optimization.

Each instance will have different
access patterns, and may have
different resource allocations.

App

Read-only
Connection

pool

Read-write
Connection

pool

In your application, you may use or see
others using different connection pools

for read and read/write workloads.

In most applications, the APIs used for
writing have significantly different uses
than the ones for reading. They may be:

less latency-sensitive;
used by services instead of humans;

limited to specific data;
primarily used at some times of day

When the work is very different, it makes
sense to target it for different instances.Read instance Read/Write instance

10 connectio
ns10 connections

Java

Ruby/Rails

Here are some code examples.
Use targetServerType in the connection string:

String url = "jdbc:postgresql://host/test?user=user&password=secret&ssl=true&targetServerType=primary";
Connection conn = DriverManager.getConnection(url);

Set up two databases in database.yml and use them like this:

class ApplicationRecord < ActiveRecord::Base
 self.abstract_class = true
 connects_to database: { writing: :primary, reading: :primary_replica }
end

Node.jsThe pg module uses a connection string. Use a different hostname for the write instance:
var pg = require('pg');
var cs = postgres://user:password@host:5432/db";
var csReader = postgres://user:password@host-ro:5432/db";

Unlike the JDBC or Rails example, this won’t ensure that the “read-write” connection is to
the primary server endpoint. Use a library if you want that behavior.

SECOND: WHY DATABASE CALLS "GET STUCK".SECOND: WHY DATABASE CALLS "GET STUCK".

they're "too big"?
No?

When your database connection "gets
stuck", what it really means is your

application is waiting on it.
have you considered not

doing that?

you have run out of connections
you are waiting on a transaction that
takes too long to execute
you are waiting on a locked resource
the result set you are requesting
takes too much memory
your database query has already
returned, but your own server code is
taking a really long time to process it

Here's what could be happening:

Monitoring will tell you which. At any
rate, your application should always time

out long database queries.

we'll see later how to

identify long queries and

memory issues!

let's see now how to dealwith available connectionsand database locking ...

Each of your active database
connections has a cost.

As a result, most database systems will
default to a maximum number of

concurrent connections. If your queries
take too long, they can pile up until that

number is hit.

Two options:
improve your query performance,

or use a connection pooler.

App
instance

1

App
instance

2
...

App
instance

N

10+10+ ... + 10 connections
=K+K+...+K MB

Relevant link: https://www.enterprisedb.com/postgres-tutorials/why-you-should-use-connection-pooling-when-setting-maxconnections-postgres

10*N connections
=N*K MB

https://www.enterprisedb.com/postgres-tutorials/why-you-should-use-connection-pooling-when-setting-maxconnections-postgres

pgbouncer is an example of a
connection pooler.

It does so by acting as a proxy server
and reusing one of the connections in its

pool to execute any new queries your
services send it.

That way, as you add service instances,
you do not need each new instance to

use up more database connections.

Relevant link: http://www.pgbouncer.org/usage.html

App
instance

1

App
instance

2
...

App
instance

N

10+10+ ... + 10 connections
=x+x+...+x MB

50 connections

pgbouncer

http://www.pgbouncer.org/usage.html

Locking is something that can happen
when several processes attempt to

update the same table or field.

Database systems will acquire locks
during certain operations. Most edit

operations only lock the target row(s)
(keep in mind a transaction can target

many rows).

In rare cases, such as when running some
forms of REINDEX or VACUUM, the

transaction will lock the whole table.
As a result, all other queries may be on

hold a long time.

You can monitor which locks are
currently active in your database.

In Postgres, this information is stored in a
special view called pg_locks which

stores information about lock objects
and which processes hold them.

THIRD:THIRD:
WHY SOME USERS ARE SUPER, AND SOME AREWHY SOME USERS ARE SUPER, AND SOME ARE

NOBODY.NOBODY.

There are several tiers of users in
Postgres (and all other databases).

When you create your database server,
you will have a default, admin user.

Your application should use a different
user account, with permissions set up so

that it can only see the appropriate
tables.

Admin User
Unprivileged

User App User

System table App table

As we've seen with pg_locks, databases
often have "system" tables that contain
super valuable information about the

database itself.

The problem is it's also super valuable to
attackers. For instance, it can contain
query text for everything that executes

on the same database!

As a result, app credentials (which are
part of a "more fragile" threat surface)

should not see them.

In SQL, GRANTs can apply to specific
SQL statements. For instance, a given

user may only do SELECTs, or some users
can INSERT new data but not modify

existing rows.

There are also default privileges, where a
new user could be able to read all
tables, including those that will be

created in the future.

These should be used wisely and
audited.

FOURTH:FOURTH:
WHY YOUR DATABASE PASSWORD DOESN'T BELONGWHY YOUR DATABASE PASSWORD DOESN'T BELONG

IN YOUR CODE.IN YOUR CODE.

We now know your application should
have its own credentials.

But even if they are unique to this service
and well-restricted, they are secrets.

Humans should not use service
credentials to access the database, and
service credentials need to be managed
and rotated by policies implemented in

automated systems.

Create a new
user/password combo

Start service with new
secret

Test new
service

Example: how to automatically rotate secrets in your database and service

specific implementations
exist using tools like Vault

or SecretsManager
(see link)

you can also set up temporary database secrets!
Relevant link: https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html

Stop older version using old
credentials

Delete older role
Test no
login

failures

All’s well
Add role again and pause

to find who is using it

All green

True False

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html

FIFTH:FIFTH:
WHY SOME QUERIES ARE HARDER THAN OTHERS.WHY SOME QUERIES ARE HARDER THAN OTHERS.

complex JOINs (costs CPU; generates
large intermediate sets)
large result sets
sort operations over large sets;
especially, sorting before filtering
table scans over large tables
using indexes with out of date
statistics
string operations

We have talked about query times before.
Some queries will execute a lot slower
than others. Here are factors that can

contribute:

You can run the EXPLAIN ANALYZE
command to obtain detailed
information on query costs.

Let's look at some examples.

Note that the size of the set (number
of rows) has a great effect on the

cost.
Seeing the output of ANALYZE can

take longer than the “real” query. Try
to use it on small reproductions.

type of scan. “seq scan” indicates
iterating through rows without an index.

other types of scan will be used
depending on index type.

actual time taken by this
part of the plan

number of rows
This can be larger than

the size of the table, when
using JOINs

this particular query uses
a MIN() so it needs to
aggregate the value over

the result set

number of parallel workers used
some queries are parallelizable. A merge

step will be added later in the plan

String operations (like using the LIKE
operator on a text field) are pretty slow.

If doing queries on text fields, consider
either pre-processing the data so that
you can use an exact match, or using
GIN indexes for text and jsonb fields.

Relevant link: https://pganalyze.com/blog/gin-index

https://pganalyze.com/blog/gin-index
https://pganalyze.com/blog/gin-index

SIXTH: WHY IT'S ALWAYS DAY 2.SIXTH: WHY IT'S ALWAYS DAY 2.
(EVEN ON AWS!)(EVEN ON AWS!)

"Day 2 operations" refers to what you do
once your system is live in production.

Your database performance, however it
currently looks on your laptop, will

drastically change when real people use
your application.

You're beyond advice now. You need data.

To reproduce some types of issues that
only occur with production scale, you

can consider load testing your database.

This is relatively safe as you can run it on
a local copy. Make sure to use a set of

test queries that is representative of your
real-world use.

pgbench can be used for load testing.

Relevant link: https://www.postgresql.org/docs/current/pgbench.html

https://www.postgresql.org/docs/current/pgbench.html

Several types of database monitoring are
useful.

You want to know which queries are
slower, and what pattern they occur in.

You want to know what is your average
CPU/memory usage, and when it changes.

And you want some tracing of long-held
locks, long transactions, and all errors.

Relevant links:
https://grafana.com/grafana/dashboards/12273-postgresql-

overview-postgres-exporter/
https://www.datadoghq.com/blog/collect-postgresql-data-with-

datadog/#tracing-postgresql-queries-with-apm
https://youtu.be/4462hcfkApM

https://grafana.com/grafana/dashboards/12273-postgresql-overview-postgres-exporter/
https://www.datadoghq.com/blog/collect-postgresql-data-with-datadog/#tracing-postgresql-queries-with-apm
https://youtu.be/4462hcfkApM

For cloud databases, slow queries (and
query performance generally) can be

found in both RDS performance insights
and the Datadog APM view.

For Postgres in all deployments,
pg_stat_statements and the pg_activity

tool also provide that information.

Relevant link: https://www.citusdata.com/blog/2019/02/08/the-most-useful-postgres-extension-pg-stat-statements/

https://github.com/dalibo/pg_activity
https://www.citusdata.com/blog/2019/02/08/the-most-useful-postgres-extension-pg-stat-statements/

SEVENTH: WHY YOUR DATABASE ISN'T "TOO BIG".SEVENTH: WHY YOUR DATABASE ISN'T "TOO BIG".
UNTIL IT IS.UNTIL IT IS.

Partitioning allows you to split a table
into physical partitions based on a given

column value.

This makes it easier to query and drop
individual partitions, as well as gives
smaller physical blocks to work with

when querying that field.

Partitions can be based on a range of
values or on specific individual values.

They're a good match for time values or
for partitioning out most active rows.

Sharding refers to splitting up the data in
your database into several instances

according to factors such as:

the geography it needs to live in,
the customers it is serving,

the frequency it is updated,
or its data retention policy.

It often leads to smaller data (and
therefore lower cost, better

perfomance).
It is also not easy.

EIGHTH: WHY YOU SHOULD USE THE INDEX, LUKEEIGHTH: WHY YOU SHOULD USE THE INDEX, LUKE
UNLESS YOU DON'T ACTUALLY USE IT.UNLESS YOU DON'T ACTUALLY USE IT.

"Just add an index" is common advice...

But it has a catch.
First, indexes take up a lot of space.

Each index grows the size of your table,
as well as the time it takes to insert fields

(and VACUUM them).

Second, not all query plans will use your
new index. As a result, monitoring is
important to prune less important

indexes.

Postgres provides a view called
pg_stat_all_indexes

 (it is part of the family of super-useful
pg_stats views).

It contains statistics on how often your
indexes are being hit, and how many

rows are returned each time.

It can be combined with EXPLAIN output
to analyze how many of your queries use
a given index, and what's their resulting

performance.

NEXT: ASK YOUR OWN QUESTIONS.NEXT: ASK YOUR OWN QUESTIONS.

Learning is not just in books.
If you want to learn how databases work, a really good
start is asking deep questions about how your database

works. For instance:

What is the slowest page load in your application? Which
SQL queries does it translate to? How long do they take?

What happens when your database server reboots if your
service had transactions pending?

You want to replace your existing table with a new one
with a different schema. What code do you need to

change? How long will it take to execute?

it is just the beginning.

is to seek out small problems before they grow up.

to keep track of everything that went wrong, and the root cause of it.

USEFUL LINKSUSEFUL LINKS
forfor

CURIOUS PEOPLECURIOUS PEOPLE

https://wiki.postgresql.org/wiki/Main_Page

https://sqlfordevs.com/

https://www.databass.dev/

https://microservices.io/patterns/data/database-per-service.html

https://wiki.postgresql.org/wiki/Main_Page
https://sqlfordevs.com/
https://www.databass.dev/
https://microservices.io/patterns/data/database-per-service.html

